Saturday, 15 October 2011

Energy development

Energy development is the effort to provide sufficient primary energy sources and secondary energy forms for supply, cost, impact on air pollution and water pollution, mitigation of climate change with renewable energy.
Technologically advanced societies have become increasingly dependent on external energy sources for transportation, the production of many manufactured goods, and the delivery of energy services. This energy allows people who can afford the cost to live under otherwise unfavorable climatic conditions through the use of heating, ventilation, and/or air conditioning. Level of use of external energy sources differs across societies, as do the climate, convenience, levels of traffic congestion, pollution and availability of domestic energy sources

Renewable sources

The wind, Sun, and biomass are three renewable energy sources
Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable (naturally replenished.) Renewable energy is an alternative to fossil fuels and nuclear power, and was commonly called alternative energy in the 1970s and 1980s. In 2008, about 19% of global final energy consumption came from renewables, with 13% coming from traditional biomass, which is mainly used for heating, and 3.2% from hydroelectricity.[1] New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels) accounted for another 2.7% and are growing very rapidly.[1] The share of renewables in electricity generation is around 18%, with 15% of global electricity coming from hydroelectricity and 3% from new renewables.[1][2]
Wind power is growing at the rate of 30% annually, with a worldwide installed capacity of 158 gigawatts (GW) in 2009,[3][4] and is widely used in Europe, Asia, and the United States.[5] At the end of 2009, cumulative global photovoltaic (PV) installations surpassed 21 GW[6][7][8] and PV power stations are popular in Germany and Spain.[9] Solar thermal power stations operate in the USA and Spain, and the largest of these is the 354 megawatt (MW) SEGS power plant in the Mojave Desert.[10] The world's largest geothermal power installation is The Geysers in California, with a rated capacity of 750 MW. Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18% of the country's automotive fuel.[11] Ethanol fuel is also widely available in the USA.
Climate change concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[12] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[13] Scientists have advanced a plan to power 100% of the world's energy with wind, hydroelectric, and solar power by the year 2030,[14][15] recommending renewable energy subsidies and a price on carbon reflecting its cost for flood and related expenses.
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas, where energy is often crucial in human development.[16] Globally, an estimated 3 million households get power from small solar PV systems. Micro-hydro systems configured into village-scale or county-scale mini-grids serve many areas.[17] More than 30 million rural households get lighting and cooking from biogas made in household-scale digesters. Biomass cookstoves are used by 160 million households.[17]

Wind

Wind power: worldwide installed capacity [18]
Wind power harnesses the power of the wind to propel the blades of wind turbines. These turbines cause the rotation of magnets, which creates electricity. Wind towers are usually built together on wind farms. Wind power is growing at the rate of 30% annually, with a worldwide installed capacity of 158 gigawatts (GW) in 2009,[3][4] and is widely used in Europe, Asia, and the United States.[5]
At the end of 2010, worldwide nameplate capacity of wind-powered generators was 197 gigawatts (GW).[19] Energy production was 430 TWh, which is about 2.5% of worldwide electricity usage.[19][20] Several countries have achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark,[19] 18% in Portugal,[19] 16% in Spain,[19] 14% in Ireland[21] and 9% in Germany in 2010.[19][22] As of 2011, 83 countries around the world are using wind power on a commercial basis.[22]

Hydroelectric

The Gordon Dam in Tasmania is a large conventional dammed-hydro facility, with an installed capacity of up to 430 MW.
In hydro energy, the gravitational descent of a river is compressed from a long run to a single location with a dam or a flume. This creates a location where concentrated pressure and flow can be used to turn turbines or water wheels, which drive a mechanical mill or an electric generator.[23]
In some cases with hydroelectric dams, there are unexpected results. One study shows that a hydroelectric dam in the Amazon has 3.6 times larger greenhouse effect per kW•h than electricity production from oil, due to large scale emission of methane from decaying organic material[24], though this is most significant as river valleys are initially flooded, and are of much less consequence for more boreal dams.[25] This effect applies in particular to dams created by simply flooding a large area, without first clearing it of vegetation. There are however investigations into underwater turbines that do not require a dam. And pumped-storage hydroelectricity can use water reservoirs at different altitudes to store wind and solar power.

Solar

Nellis Solar Power Plant, the third largest photovoltaic power plant in North America.
Solar power involves using solar cells to convert sunlight into electricity, using sunlight hitting solar thermal panels to convert sunlight to heat water or air, using sunlight hitting a parabolic mirror to heat water (producing steam), or using sunlight entering windows for passive solar heating of a building. It would be advantageous to place solar panels in the regions of highest solar radiation.[26] In the Phoenix, Arizona area, for example, the average annual solar radiation is 5.7 kW·h/(m²·day),[27] or 2.1 MW·h/(m²·yr). Electricity demand in the continental U.S. is 3.7×1012 kW·h per year. Thus, at 20% efficiency, an area of approximately 3500 square miles (3% of Arizona's land area) would need to be covered with solar panels to replace all current electricity production in the US with solar power. The average solar radiation in the United States is 4.8 kW·h/(m²·day),[28] but reaches 8–9 kWh/m²/day in parts of the Southwest.
At the end of 2009, cumulative global photovoltaic (PV) installations surpassed 21 GW[6][7][8] and PV power stations are popular in Germany and Spain.[9] Solar thermal power stations operate in the USA and Spain, and the largest of these is the 354 megawatt (MW) SEGS power plant in the Mojave Desert.[10]
China is increasing worldwide silicon wafer capacity for photovoltaics to 2,000 metric tons by July 2008, and over 6,000 metric tons by the end of 2010.[29] Significant international investment capital is flowing into China to support this opportunity. China is building large subsidized off-the-grid solar-powered cities in Huangbaiyu and Dongtan Eco City. Much of the design was done by Americans such as William McDonough.[30]

Agricultural biomass

Sugar cane residue can be used as a biofuel
Biomass production involves using garbage or other renewable resources such as corn or other vegetation to generate electricity. When garbage decomposes, the methane produced is captured in pipes and later burned to produce electricity. Vegetation and wood can be burned directly to generate energy, like fossil fuels, or processed to form alcohols. Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18% of the country's automotive fuel.[11] Ethanol fuel is also widely available in the USA.
Vegetable oil is generated from sunlight, H2O, and CO2 by plants. It is safer to use and store than gasoline or diesel as it has a higher flash point. Straight vegetable oil works in diesel engines if it is heated first. Vegetable oil can also be transesterified to make biodiesel, which burns like normal diesel.

Geothermal

Geothermal energy harnesses the heat energy present underneath the Earth. Two wells are drilled. One well injects water into the ground to provide water. The hot rocks heat the water to produce steam. The steam that shoots back up the other hole(s) is purified and is used to drive turbines, which power electric generators. When the water temperature is below the boiling point of water a binary system is used. A low boiling point liquid is used to drive a turbine and generator in a closed system similar to a refrigeration unit running in reverse. There are also natural sources of geothermal energy: some can come from volcanoes, geysers, hot springs, and steam vents.[31] The world's largest geothermal power installation is The Geysers in California, with a rated capacity of 750 MW.

Tidal

Tidal power can be extracted from Moon-gravity-powered tides by locating a water turbine in a tidal current, or by building impoundment pond dams that admit-or-release water through a turbine. The turbine can turn an electrical generator, or a gas compressor, that can then store energy until needed. Coastal tides are a source of clean, free, renewable, and sustainable energy.[32]

Fossil fuels

The Moss Landing Power Plant burns natural gas to produce electricity in California.
Fossil fuels sources burn coal or hydrocarbon fuels, which are the remains of the decomposition of plants and animals. There are three main types of fossil fuels: coal, petroleum, and natural gas. Another fossil fuel, liquefied petroleum gas (LPG), is principally derived from the production of natural gas. Heat from burning fossil fuel is used either directly for space heating and process heating, or converted to mechanical energy for vehicles, industrial processes, or electrical power generation.
Greenhouse gas emissions result from fossil fuel-based electricity generation. Currently governments subsidize fossil fuels by an estimated $500 billion a year.[33]

Nuclear

Fission

Diablo Canyon Power Plant Nuclear power station.
Nuclear power stations use nuclear fission to generate energy by the reaction of uranium-235 inside a nuclear reactor. The reactor uses uranium rods, the atoms of which are split in the process of fission, releasing a large amount of energy. The process continues as a chain reaction with other nuclei. The energy heats water to create steam, which spins a turbine generator, producing electricity.
Depending on the type of fission fuel considered, estimates for existing supply at known usage rates varies from several decades for the currently popular Uranium-235 to thousands of years for uranium-238. At the present rate of use, there are (as of 2007) about 70 years left of known uranium-235 reserves economically recoverable at a uranium price of US$ 130/kg.[34] The nuclear industry argue that the cost of fuel is a minor cost factor for fission power, more expensive, more difficult to extract sources of uranium could be used in the future, such as lower-grade ores, and if prices increased enough, from sources such as granite and seawater.[34] Increasing the price of uranium would have little effect on the overall cost of nuclear power; a doubling in the cost of natural uranium would increase the total cost of nuclear power by 5 percent. On the other hand, if the price of natural gas was doubled, the cost of gas-fired power would increase by about 60 percent.[35]
Opponents on the other hand argue that the correlation between price and production is not linear, but as the ores' concentration becomes smaller, the difficulty (energy and resource consumption are increasing, while the yields are decreasing) of extraction rises very fast, and that the assertion that a higher price will yield more uranium is overly optimistic; for example a rough estimate predicts that the extraction of uranium from granite will consume at least 70 times more energy than what it will produce in a reactor. As many as eleven countries have depleted their uranium resources, and only Canada has mines left that produce better than 1% concentration ore.[36] Seawater seems to be equally dubious as a source.[37]
Nuclear meltdowns and other reactor accidents, such as the Fukushima I nuclear accident (2011), Three Mile Island accident (1979) and the Chernobyl disaster (1986), have caused much public concern. Research is being done to lessen the known problems of current reactor technology by developing automated and passively safe reactors. Historically, however, coal and hydropower power generation have both been the cause of more deaths per energy unit produced than nuclear power generation.[38][39]
Nuclear proliferation is the spread of nuclear technology which may happen from nation to nation or through other black market channels, including nuclear power plants and related technology including nuclear weapons.
The long-term radioactive waste storage problems of nuclear power have not been solved. Several countries have considered using underground repositories. Nuclear waste takes up little space compared to wastes from the chemical industry which remain toxic indefinitely.[40] Spent fuel rods are now stored in concrete casks close to the nuclear reactors.[41] The amounts of waste could be reduced in several ways. Both nuclear reprocessing and breeder reactors could reduce the amounts of waste. Subcritical reactors or fusion reactors could greatly reduce the time the waste has to be stored.[42] Subcritical reactors may also be able to do the same to already existing waste. The only long-term way of dealing with waste today is by geological storage.
At present, nuclear energy is in decline, according to a 2007 World Nuclear Industry Status Report presented by the Greens/EFA group in the European Parliament. The report outlines that the proportion of nuclear energy in power production has decreased in 21 out of 31 countries, with five fewer functioning nuclear reactors than five years ago. There are currently 32 nuclear power plants under construction or in the pipeline, 20 fewer than at the end of the 1990s.[43][44]
Thorium can be used as fuel in a nuclear reactor. A thorium fuel cycle offers several potential advantages over a uranium fuel cycle including much greater abundance on Earth, superior physical and nuclear properties of the fuel, enhanced proliferation resistance, and reduced nuclear waste production. Nobel laureate Carlo Rubbia at CERN (European Organization for Nuclear Research), has worked on developing the use of thorium as an alternative to uranium in reactors. Rubbia states that a tonne of thorium can produce as much energy as 200 tonnes of uranium, or 3,500,000 tonnes of coal.[45] One of the early pioneers of the technology was U.S. physicist Alvin Weinberg at Oak Ridge National Laboratory in Tennessee, who helped develop a working nuclear plant using liquid fuel in the 1960s.

Fusion

Fusion power could solve many of the problems of fission power (the technology mentioned above) but, despite research having started in the 1950s, no commercial fusion reactor is expected before 2050.[46] Many technical problems remain unsolved. Proposed fusion reactors commonly use deuterium, an isotope of hydrogen, as fuel and in most current designs also lithium. Assuming a fusion energy output equal to the current global output and that this does not increase in the future, then the known current lithium reserves would last 3000 years, lithium from sea water would last 60 million years, and a more complicated fusion process using only deuterium from sea water would have fuel for 150 billion years.[47]

Cost by source

The following chart does not include the external, weather-related costs of using fossil fuels.
Large energy subsidies are present in many countries (Barker et al., 2001:567-568).[48] Currently governments subsidize fossil fuels by $557 billion per year.[33][49] Economic theory indicates that the optimal policy would be to remove coal mining and burning subsidies and replace them with optimal taxes. Global studies indicate that even without introducing taxes, subsidy and trade barrier removal at a sectoral level would improve efficiency and reduce environmental damage. Removal of these subsidies would substantially reduce GHG emissions and stimulate economic growth.

Increased energy efficiency

Energy efficiency is increasing by about 2% a year[citation needed], and absorbs most of the requirements for energy development. New technology makes better use of already available energy through improved efficiency, such as more efficient fluorescent lamps, engines, and insulation. Using heat exchangers, it is possible to recover some of the energy in waste warm water and air, for example to preheat incoming fresh water. Hydrocarbon fuel production from pyrolysis could also be in this category, allowing recovery of some of the energy in hydrocarbon waste. Already existing power plants often can and usually are made more efficient with minor modifications due to new technology. New power plants may become more efficient with technology like cogeneration. New designs for buildings may incorporate techniques like passive solar. Light-emitting diodes are gradually replacing the remaining uses of light bulbs. Note that none of these methods allows perpetual motion, as some energy is always lost to heat.
Mass transportation increases energy efficiency compared to widespread conventional automobile use while air travel is regarded as inefficient. Conventional combustion engine automobiles have continually improved their efficiency and may continue to do so in the future, for example by reducing weight with new materials. Hybrid vehicles can save energy by allowing the engine to run more efficiently, regaining energy from braking, turning off the motor when idling in traffic, etc. More efficient ceramic or diesel engines can improve mileage. Electric vehicles such as Maglev, trolleybuses, and PHEVs are more efficient during use (but maybe not if doing a life cycle analysis) than similar current combustion based vehicles, reducing their energy consumption during use by 1/2 to 1/4. Microcars or motorcycles may replace automobiles carrying only one or two people. Transportation efficiency may also be improved by in other ways, see automated highway system.
Electricity distribution may change in the future. New small scale energy sources may be placed closer to the consumers so that less energy is lost during electricity distribution. New technology like superconductivity or improved power factor correction may also decrease the energy lost. Distributed generation permits electricity "consumers," who are generating electricity for their own needs, to send their surplus electrical power back into the power grid.

Transmission

An elevated section of the Alaska Pipeline.
While new sources of energy are only rarely discovered or made possible by new technology, distribution technology continually evolves.[50] The use of fuel cells in cars, for example, is an anticipated delivery technology.[citation needed] This section presents some of the more common delivery technologies that have been important to historic energy development. They all rely in some way on the energy sources listed in the previous section.

Water

Fossil fuels

Shipping is a flexible delivery technology that is used in the whole range of energy development regimes from primitive to highly advanced. Currently, coal, petroleum and their derivatives are delivered by shipping via boat, rail, or road. Petroleum and natural gas may also be delivered via pipeline and coal via a Slurry pipeline. Refined hydrocarbon fuels such as gasoline and LPG may also be delivered via aircraft. Natural gas pipelines must maintain a certain minimum pressure to function correctly. Ethanol's corrosive properties make it harder to build ethanol pipelines. The higher costs of ethanol transportation and storage are often prohibitive.[51]

Electricity

Electric Grid: Pilons and cables distribute power
Electricity grids are the networks used to transmit and distribute power from production source to end user, when the two may be hundreds of kilometres away. Sources include electrical generation plants such as a nuclear reactor, coal burning power plant, etc. A combination of sub-stations, transformers, towers, cables, and piping are used to maintain a constant flow of electricity. Grids may suffer from transient blackouts and brownouts, often due to weather damage. During certain extreme space weather events solar wind can interfere with transmissions. Grids also have a predefined carrying capacity or load that cannot safely be exceeded. When power requirements exceed what's available, failures are inevitable. To prevent problems, power is then rationed.
Industrialised countries such as Canada, the US, and Australia are among the highest per capita consumers of electricity in the world, which is possible thanks to a widespread electrical distribution network. The US grid is one of the most advanced, although infrastructure maintenance is becoming a problem. CurrentEnergy provides a realtime overview of the electricity supply and demand for California, Texas, and the Northeast of the US. African countries with small scale electrical grids have a correspondingly low annual per capita usage of electricity. One of the most powerful power grids in the world supplies power to the state of Queensland, Australia.

Storage

Methods of energy storage have been developed, which transform electrical energy into forms of potential energy. A method of energy storage may be chosen on the basis of stability, ease of transport, ease of energy release, or ease of converting free energy from the natural form to the stable form.

Chemical

Some natural forms of energy are found in stable chemical compounds such as fossil fuels. Most systems of chemical energy storage result from biological activity, which store energy in chemical bonds. Man-made forms of chemical energy storage include hydrogen fuel, synthetic hydrocarbon fuel, batteries and explosives such as cordite and dynamite.

Gravitational and hydroelectric

Dams can be used to store energy, by using pumped-storage hydroelectricity, excess energy to pump water into the reservoir. When electrical energy is required, the process is reversed. The water then turns a turbine, generating electricity. Hydroelectric power is currently an important part of the world's energy supply, generating one-fifth of the world's electricity.[52]

Thermal

There are several technologies to store heat. Thermal energy from the sun, for example, can be stored in a reservoir or in the ground for daily or seasonal use. Thermal energy for cooling can be stored in ice.[53] Many thermal power plants are set up near coal or oil fields. The thermal power plant is used since fuel is burnt to produce heat energy, which is converted into electrical energy .[53]Mechanical pressure
Energy may also be stored in pressurized gases or alternatively in a vacuum. Compressed air, for example, may be used to operate vehicles and power tools. Large-scale compressed air energy storage facilities are used to smooth out demands on electricity generation by providing energy during peak hours and storing energy during off-peak hours. Such systems save on expensive generating capacity since it only needs to meet average consumption rather than peak consumption.[54]

Electrical capacitance

Electrical energy may be stored in capacitors. Capacitors are often used to produce high intensity releases of energy (such as a camera's flash).

Hydrogen

Hydrogen can be manufactured at roughly 77 percent thermal efficiency by the method of steam reforming of natural gas.[55] When manufactured by this method it is a derivative fuel like gasoline; when produced by electrolysis of water, it is a form of chemical energy storage as are storage batteries, though hydrogen is the more versatile storage mode since there are two options for its conversion to useful work: (1) a fuel cell can convert the chemicals hydrogen and oxygen into water, and in the process, produce electricity, or (2) hydrogen can be burned (less efficiently than in a fuel cell) in an internal combustion engine.

Vehicles

Energy flow in the U.S., 2008

Fossil fuels

Petroleum, coal and natural gas are used to power most transportation and buildings.

Batteries

Main articles: battery, battery electric vehicle
Batteries are used to store energy in a chemical form. As an alternative energy, batteries can be used to store energy in battery electric vehicles. Battery electric vehicles can be charged from the grid when the vehicle is not in use. Because the energy is derived from electricity, battery electric vehicles make it possible to use other forms of alternative energy such as wind, solar, geothermal, nuclear, or hydroelectric.

Compressed air

Main articles: Compressed air vehicle, Air car
The Indian company, Tata, is planning to release a compressed air powered car in 2008.

Sustainability

Energy consumption from 1989 to 1999
The environmental movement emphasizes sustainability of energy use and development. Renewable energy is sustainable in its production; the available supply will not be diminished for the foreseeable future - millions or billions of years. "Sustainability" also refers to the ability of the environment to cope with waste products, especially air pollution. Sources which have no direct waste products (such as wind, solar, and hydropower) are seen as ideal in this regard.
Fossil fuels such as petroleum, coal, and natural gas are not renewable. For example, the timing of worldwide peak oil production is being actively debated but it has already happened in some countries. Fossil fuels also make up the bulk of the world's current primary energy sources. With global demand for energy growing, the need to adopt alternative energy sources is also growing. Fossil fuels are also a major source of greenhouse gas emissions, leading to concerns about global warming if consumption is not reduced.
Energy conservation is an alternative or complementary process to energy development. It reduces the demand for energy by using it more efficiently.

Resilience

Energy consumption per capita (2001). Red hues indicate increase, green hues decrease of consumption during the 1990s.
Some observers contend that the much talked about idea of “energy independence” is an unrealistic and opaque concept. They offer “energy resilience” as a more sensible goal and more aligned with economic, security and energy realities. The notion of resilience in energy was detailed in the 1982 book Brittle Power: Energy Strategy for National Security.[56] The authors argued that simply switching to domestic energy would be no more secure inherently because the true weakness is the interdependent and vulnerable energy infrastructure of the United States. Key aspects such as gas lines and the electrical power grid are centralized and easily susceptible to major disruption. They conclude that a “resilient energy supply” is necessary for both national security and the environment. They recommend a focus on energy efficiency and renewable energy that is more decentralized.[57]
More recently former Intel Corporation Chairman and CEO Andrew Grove has touted energy resilience, arguing that complete independence is infeasible given the global market for energy.[58] He describes energy resilience as the ability to adjust to interruptions in the supply of energy. To this end he suggests the U.S. make greater use of electricity.[59] Electricity can be produced from a variety of sources. A diverse energy supply will be less impacted by the disruption in supply of any one source. He reasons that another feature of electrification is that electricity is “sticky” – meaning the electricity produced in the U.S. is more likely to stay there because it cannot be transported overseas. According to Grove, a key aspect of advancing electrification and energy resilience will be converting the U.S. automotive fleet from gasoline-powered to electric-powered. This, in turn, will require the modernization and expansion of the electrical power grid. As organizations such as the Reform Institute have pointed out, advancements associated with the developing smart grid would facilitate the ability of the grid to absorb vehicles en masse connecting to it to charge their batteries.[60]

Future

World Primary Energy Outlook by EIA (as of 2011-06)
An increasing share of world energy consumption is predicted to be used by developing nations. Source: EIA.
Extrapolations from current knowledge to the future offer a choice of energy futures.[61] Some predictions parallel the Malthusian catastrophe hypothesis. Numerous are complex models based scenarios as pioneered by Limits to Growth. Modeling approaches offer ways to analyze diverse strategies, and hopefully find a road to rapid and sustainable development of humanity. Short term energy crises are also a concern of energy development. Some extrapolations lack plausibility, particularly when they predict a continual increase in oil consumption.
Energy production usually requires an energy investment. Drilling for oil or building a wind power plant requires energy. The fossil fuel resources (see above) that are left are often increasingly difficult to extract and convert. They may thus require increasingly higher energy investments. If the investment is greater than the energy produced, then the fossil resource is no longer an energy source. This means that a large part of the fossil fuel resources and especially the non-conventional ones cannot be used for energy production today. Such resources may still be exploited economically in order to produce raw materials for plastics, fertilizers or even transportation fuel but now more energy is consumed than produced. (They then become similar to ordinary mining reserves, economically recoverable but not net positive energy sources.) New technology may ameliorate this problem if it can lower the energy investment required to extract and convert the resources, although ultimately basic physics sets limits that cannot be exceeded.
Between 1950 and 1984, as the Green Revolution transformed agriculture around the globe, world grain production increased by 250%. The energy for the Green Revolution was provided by fossil fuels in the form of fertilizers (natural gas), pesticides (oil), and hydrocarbon fueled irrigation.[62] The peaking of world hydrocarbon production (peak oil) may lead to significant changes, and require sustainable methods of production.

Wednesday, 12 October 2011

Reflection

Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected. Mirrors exhibit specular reflection.
In acoustics, reflection causes echoes and is used in sonar. In geology, it is important in the study of seismic waves. Reflection is observed with surface waves in bodies of water. Reflection is observed with many types of electromagnetic wave, besides visible light. Reflection of VHF and higher frequencies is important for radio transmission and for radar. Even hard X-rays and gamma rays can be reflected at shallow angles with special "grazing" mirrors.

Reflection of light


Double reflection: The sun is reflected in the water, which is reflected in the paddle.
Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface. Furthermore, if the interface is between a dielectric and a conductor, the phase of the reflected wave is retained, otherwise if the interface is between two dielectrics, the phase may be retained or inverted, depending on the indices of refraction.[citation needed]
A mirror provides the most common model for specular light reflection, and typically consists of a glass sheet with a metallic coating where the reflection actually occurs. Reflection is enhanced in metals by suppression of wave propagation beyond their skin depths. Reflection also occurs at the surface of transparent media, such as water or glass.

Diagram of specular reflection
In the diagram at left, a light ray PO strikes a vertical mirror at point O, and the reflected ray is OQ. By projecting an imaginary line through point O perpendicular to the mirror, known as the normal, we can measure the angle of incidence, θi and the angle of reflection, θr. The law of reflection states that θi = θr, or in other words, the angle of incidence equals the angle of reflection.
In fact, reflection of light may occur whenever light travels from a medium of a given refractive index into a medium with a different refractive index. In the most general case, a certain fraction of the light is reflected from the interface, and the remainder is refracted. Solving Maxwell's equations for a light ray striking a boundary allows the derivation of the Fresnel equations, which can be used to predict how much of the light is reflected, and how much is refracted in a given situation. Total internal reflection of light from a denser medium occurs if the angle of incidence is above the critical angle.
Total internal reflection is used as a means of focusing waves that cannot effectively be reflected by common means. X-ray telescopes are constructed by creating a converging "tunnel" for the waves. As the waves interact at low angle with the surface of this tunnel they are reflected toward the focus point (or toward another interaction with the tunnel surface, eventually being directed to the detector at the focus). A conventional reflector would be useless as the X-rays would simply pass through the intended reflector.
When light reflects off a material denser (with higher refractive index) than the external medium, it undergoes a polarity inversion. In contrast, a less dense, lower refractive index material will reflect light in phase. This is an important principle in the field of thin-film optics.
Specular reflection forms images. Reflection from a flat surface forms a mirror image, which appears to be reversed from left to right because we compare the image we see to what we would see if we were rotated into the position of the image. Specular reflection at a curved surface forms an image which may be magnified or demagnified; curved mirrors have optical power. Such mirrors may have surfaces that are spherical or parabolic.

Laws of reflection


Specular reflection
If the reflecting surface is very smooth, the reflection of light that occurs is called specular or regular reflection. The laws of reflection are as follows:
  1. The incident ray, the reflected ray and the normal to the reflection surface at the point of the incidence lie in the same plane.
  2. The angle which the incident ray makes with the normal is equal to the angle which the reflected ray makes to the same normal.
  3. The reflected ray and the incident ray are on the opposite sides of the normal.

Mechanism

In the classical electrodynamics, light is considered as electromagnetic wave, which is governed by the Maxwell Equations. Light waves incident on a material induce small oscillations of polarisation in the individual atoms (or oscillation of electrons, in metals), causing each particle to radiate a small secondary wave (in all directions, like a dipole antenna). All these waves add up to give specular reflection and refraction, according to the Huygens-Fresnel principle.
In case of dielectric (glass), the electric field of the light acts on the electrons in the glass, the moving electrons generate a field and become a new radiator. The refraction light in the glass is the combined of the forward radiation of the electrons and the incident light and; the backward radiation is the one we see reflected from the surface of transparent materials, this radiation comes from everywhere in the glass, but it turns out that the total effect is equivalent to a reflection from the surface.
In metals, the electrons with no binding energy are called free electrons. The density number of the free electrons is very large. When these electrons oscillate with the incident light, the phase differences between the radiation field of these electrons and the incident field are π, so the forward radiation will compensate the incident light at a skin depth, and backward radiation is just the reflected light.
Light–matter interaction in terms of photons is a topic of quantum electrodynamics, and is described in detail by Richard Feynman in his popular book QED: The Strange Theory of Light and Matter.

Diffuse reflection


General scattering mechanism which gives diffuse reflection by a solid surface
When light strikes the surface of a (non-metallic) material it bounces off in all directions due to multiple reflections by the microscopic irregularities inside the material (e.g. the grain boundaries of a polycrystalline material, or the cell or fiber boundaries of an organic material) and by its surface, if it is rough. Thus, an 'image' is not formed. This is called diffuse reflection. The exact form of the reflection depends on the structure of the material. One common model for diffuse reflection is Lambertian reflectance, in which the light is reflected with equal luminance (in photometry) or radiance (in radiometry) in all directions, as defined by Lambert's cosine law.
The light sent to our eyes by most of the objects we see is due to diffuse reflection from their surface, so that this is our primary mechanism of physical observation.[1]

Retroreflection


Working principle of a corner reflector
Some surfaces exhibit retroreflection. The structure of these surfaces is such that light is returned in the direction from which it came.
When flying over clouds illuminated by sunlight the region seen around the aircraft's shadow will appear brighter, and a similar effect may be seen from dew on grass. This partial retro-reflection is created by the refractive properties of the curved droplet's surface and reflective properties at the backside of the droplet.
Some animals' retinas act as retroreflectors, as this effectively improves the animals' night vision. Since the lenses of their eyes modify reciprocally the paths of the incoming and outgoing light the effect is that the eyes act as a strong retroreflector, sometimes seen at night when walking in wildlands with a flashlight.
A simple retroreflector can be made by placing three ordinary mirrors mutually perpendicular to one another (a corner reflector). The image produced is the inverse of one produced by a single mirror. A surface can be made partially retroreflective by depositing a layer of tiny refractive spheres on it or by creating small pyramid like structures. In both cases internal reflection causes the light to be reflected back to where it originated. This is used to make traffic signs and automobile license plates reflect light mostly back in the direction from which it came. In this application perfect retroreflection is not desired, since the light would then be directed back into the headlights of an oncoming car rather than to the driver's eyes.

Multiple reflections

When light reflects off a mirror, one image appears. Two mirrors placed exactly face to face give the appearance of an infinite number of images along a straight line. The multiple images seen between two mirrors that sit at an angle to each other lie over a circle. [2] The center of that circle is located at the imaginary intersection of the mirrors. A square of four mirrors placed face to face give the appearance of an infinite number of images arranged in a plane. The multiple images seen between four mirrors assembling a pyramid, in which each pair of mirrors sits an angle to each other, lie over a sphere. If the base of the pyramid is rectangle shaped, the images spread over a section of a torus. [3]

Complex conjugate reflection

Light bounces exactly back in the direction from which it came due to a nonlinear optical process. In this type of reflection, not only the direction of the light is reversed, but the actual wavefronts are reversed as well. A conjugate reflector can be used to remove aberrations from a beam by reflecting it and then passing the reflection through the aberrating optics a second time.

Other types of reflection

Neutron reflection

Materials that reflect neutrons, for example beryllium, are used in nuclear reactors and nuclear weapons. In the physical and biological sciences, the reflection of neutrons off of atoms within a material is commonly used to determine the material's internal structure.

Sound reflection


Sound diffusion panel for high frequencies
When a longitudinal sound wave strikes a flat surface, sound is reflected in a coherent manner provided that the dimension of the reflective surface is large compared to the wavelength of the sound. Note that audible sound has a very wide frequency range (from 20 to about 17000 Hz), and thus a very wide range of wavelengths (from about 20 mm to 17 m). As a result, the overall nature of the reflection varies according to the texture and structure of the surface. For example, porous materials will absorb some energy, and rough materials (where rough is relative to the wavelength) tend to reflect in many directions—to scatter the energy, rather than to reflect it coherently. This leads into the field of architectural acoustics, because the nature of these reflections is critical to the auditory feel of a space. In the theory of exterior noise mitigation, reflective surface size mildly detracts from the concept of a noise barrier by reflecting some of the sound into the opposite direction.

Seismic reflection

Seismic waves produced by earthquakes or other sources (such as explosions) may be reflected by layers within the Earth. Study of the deep reflections of waves generated by earthquakes has allowed seismologists to determine the layered structure of the Earth. Shallower reflections are used in reflection seismology to study the Earth's crust generally, and in particular to prospect for petroleum and natural gas deposits.